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Abstract 

We consider a generalized Fock space obtained by eliminating the restriction to symmetric 
components for bosons or antisymmetric ones for fermions. In this space we can extend 
the many times formalism of relativistic quantum mechanics to quantum field theory, 
in which each particle has a time parameter that has to be included in any exchange of 
variables. Physical states in which all particle times, or all antiparticle times, are equal, 
still ha'~e the right symmetry. We define creation and annihilation operators for numbered 
particles in this space, and relate them to the usual operators. 

1. Introduction 

We previously defined (Marx, 1972) in a somewhat modified manner 
the creation and annihilation operators in a relativistic Fork  space. The 
changes were suggested by the probabilistic interpretation of  relativistic 
quantum mechanics, especially important  in configuration space. We have 
primarily used normalized functions to describe the states in which particles 
are created or annihilated, although they can be formally replaced by 
Dirac 3-functions when this is found to be more convenient. 

Our theory of relativistic quantum mechanics is based on Dirac's  many 
times formalism, and pair creation and annihilation are taken into account 
by reversing the direction of propagation of the wave function in time. We 
thus obtain a theory with a fixed number of  'particles', which can be found 
either in a particle state or an antiparticle state. The wave functions in such 
a theory are either symmetric or antisymmetric under the exchange of all 
variables corresponding to two particles, which in particular includes the 
time parameters. For  instance, for a two-particle boson amplitude we have 

~b(++)(xl, tl ;x2, t2) = f f J (++) (X2 ,  t2 ;xl,  tl) (1.1) 

This does not imply that the amplitudes for fixed values of  tl and t2 are 
symmetric functions of  xl and x2. Only when the times are equal do we 
obtain the usual symmetry relations, that is, equation (1.1) becomes 

~b~++)(xl, x2 ; t) = ~b(++~(x2, xl ; t) (1.2) 
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We note that the observer, implicit in any theory formulated in the 
Schr6dinger picture, selects a preferred time direction in Minkowski space, 
and the states of the system are described on hyperplanes perpendicular to 
this direction, by functions of three-vector variables. The 'particle' times 
are parameters that characterize the motion of the state vector in a 
dynamical problem.j" 

We have assumed that we start with a given state in which the particles 
are all at the initial time and antiparticles all at the final time, and the 
results of a dynamical calculation are amplitudes with particles at the final 
time and antiparticles at the initial time. All these amplitudes have the 
right symmetry. But the time development of the system through equations 
of motion includes all intermediate times, where this is not the case.} 
Creation operators defined (Schweber, 1961 ; Marx, 1970a, b, 1972) for a 
Fock space with symmetric or antisymmetric components have this 
property built into them, and new operators that only affect a specific 
variable are needed in the generalized Fock space. 

In this paper we consider only the state vectors that describe the systems 
and not their time development. To avoid unnecessary complications, we 
assume that only components with a fixed number of variables differ from 
zero, although many equations apply to a more general state. 

We present the new creation and annihilation operators and their anti- 
commutation relations in the case of spin-�89 fermions in Section 2. In 
Section 3 we relate these operators to those defined for the more restricted 
Fock space. We briefly discuss the changes that have to be made for the 
case of spinless bosons in Section 4, and we conclude with some remarks 
in Section 5. The notation we use follows closely that of Marx (1972). 

2. Numbered 'Particle' Creation and Annihilation Operators 

We designate the creation and annihilation operators for 'particle' j in 
a state b byw R}~)(b) and L}~(b) respectively. We define them by giving the 
components of ~ '  and 7 t ' ,  for an arbitrary state vector ~,  where 

tit, = R(~)(b) ~ (2.1) 

~ "  = L}~,(b) 7-' (2 .2)  

]" We recover the symmetry properties of the amplitudes if we consider them as vectors 
in a different Hilbert space, that of functions of several four-vector variables: We prefer 
not to do this, since we find that it obscures the physical interpretation of the theory 
and changes {he basic definitions of quantum mechanics. 

:t: This was overlooked in the case of identical bosons in an electromagnetic field 
(Marx, 1970b), and the presentation of the dynamics in Fock space has to be changed 
accordingly. 

w The index • refers to the mode of propagation, and ranges over plus for particles 
and minus for antiparticles. The state b is given by two amplitudes normalized to 1, that 
is, if we use momentum space amplitudes, we have 

E ( dak[b~.(k)[ 2 = 1 
d 
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They are t  

r t(K1 . . . .  n) = (--t) i - -1  3 ~ l t ,  ,t ,(~'"~J-~ ~J+~ . . . . .  ) ( 2 . 3 )  
(1 . . . . .  n) u j  ~F(I . . . . .  J -  l , J +  1 . . . . .  n) 

~b"(" , . - . '~,)  r l w - 1  I , *  J,( 'q.-- '~J-~ " " J . . . ' ~o  ( 2 . 4 )  
(1 . . . . .  n )  = k - 1 )  e ' l  ' F ( 1  . . . . .  j - l , i , j  . . . . .  n) 

when these equations are applicable, and zero otherwise. It  is now straight- 
forward to show that the creation operator is the Hermitian conjugate of  
the annihilation operator with respect to the metric 

(u 7-")  = 4, ~~ r + (r r + (r ,% r ,~)) + . . .  (2 .5)  

Instead of  the usual anticommutation relation, we find that 

R}~)(b) ( ~ ' ) '  (~') ' "' (2.6) R~, (b ) +  R;,+~(b )R~)(b)=O, j<<.j 
( ,o (,, ') , ( , , ' ) ,  ( ,o " " (2.7) Lj (b)Lj, ( b ) + L j ,  (b)Lj+x(b)=O, j>~j 

L}~)(b) R},~')(b ') + R}~,')(b')L}E)l(b) = O, j > j '  (2.8) 

R (r b' ( ~  L~J'~ 1'-I( )Lj  ( b ) = 0 ,  j < j '  (2.9) 
( ~ ' ( )  (~') , 8 ~ ' ,  L~ b Rj, (b )=(b ,b ' )  j = j '  (2.10) 

We note that  ~ '  is normalized when T has norm 1, but that this is not 
necessarily the case for 7 t". 

As we have done before, we can extend the definitions to include the Dirac 
3-function and set in the place of  b 

b,~ k = 3z~s 3(k - kj.) (2.11) 

to define R~)(k) and L~' (k) .  

3. Restriction to Antisymmetric AmpIitudes 

When the usual assumption that all the times are equal is made, we 
recover the condition that all amplitudes have certain symmetry con- 
ditions. The usual creation and annihilation operators are defined within 
this subspace, and are related to the operators defined above by:~ 

R'K'(b) = n -1'2 ~ n~'(b) (3.1) 
j = l  

n + l  

L(~)(b) = (n + !) -l/z ~ L~'~ (3.2) 
j = l  

We note that we obtain n + 1 equal terms from the sum in equation (3.2), 
which gives the normalization factor (n + 1) 1/2 found previously (not that in 

t A subindex on a function stands for both the continuous variable and spin index. 
When such an index is repeated, it implies an integration over the former and a summation 
over the latter. 

Here we assume that the state vectors W' and 7 j" have only components for n 
'particles'. 
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Schweber, where a different scalar product in Fock space is used). Neither 
7I' nor 7 t" are necessarily normalized now. 

With some attention paid to the number of particles in the different 
states and the restrictions on the indices in equations (2.6) to (2.10), we 
can easily show]" that the operators defined by equations (3.1) and (3.2) 
obey the usual anticommutation relations. 

4. Identical Bosons 

We only have to introduce a few changes in the equations of the last two 
sections to apply them to the case of scalar bosons. There is, of  course, no 
longer a spin index and b stands for a single function. The phase factor 
(-1)  s-~ in equations (2.3) and (2.4) leads to anticommutation relations, 
and we eliminate it to define the boson operators; the new states are given 
by 

~b'(~ ..... ) ~Sbs,l~(~...~s-~ ~s+~...~,) (4.1) (1 . . . . .  n)  ~ 'P ' ( I  . . . . .  j - - l , j + l  . . . . .  n)  

~"(KI . . .  ~r 1 (K l...~cj_ 1 ~cKj...t%) (l,,.,.) b~ (4.2) ~ ( 1  . . . . .  j - l , l , j  . . . . .  n)  

Creation and annihilation operators now obey commutation relations 
obtained by changing the plus signs in equations (2.6) to (2.9) to minus 
signs. 

We can use equations (3.1) and (3.2) as they stand for equal-time ampli- 
tudes, which in this case are symmetric. The resulting operators obey the 
usual commutation relations. 

5. Concluding Remarks  

We have defined creation and annihilation operators in a generalized 
Fock space, in which the states are not restricted to symmetric or anti- 
symmetric amplitudes. The operators in this Fock space can be used to 
formulate a second quantized version of the many times formalism of  
relativistic quantum mechanics. Such a theory deals with a fixed number 

? For instance, if we assume that the operators apply to a state W with n 'particles', 
we have 

J_ rn+2 l in+' R}~,,)(b,) ] 

n + 2 J - I  n + I n + l  
= ~ ~ R(j~)(b)R(F)fb')+ ~ ~ R(j~'(b)R(j~')(b3 

d = 2 J ' =  1 j = l J ' = J  

n + 2 j - I  n + l  n + l  

= - ~  ~ l?(j~,')(bDR(j~-)l(b) ~. ~ (~) , (~) - Rj,+l(b ) R  1 (b) 
J = 2 J ' = l  j ~ l j ' ~ J  

n + l  j 
= -  ~ E R~'i")(b') R~)(b) 

j = l j ' = l  

n + l  n + 2  

- Z ~ R(fl')(b')R(j~)(b) 
J= 1 j ' = J +  | 

= - ( n  + 1) 1/2 (n + 2) 112 R(~')(b ") R(~)(b) 
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of 'particles', and we have used this property to relate our operators to the 
usual ones, but this is not a basic restriction in either case. 

The extension to particles with higher spin or other multiplicities such as 
isospin is straightforward, and we can also extend the definitions to allow 
for different types of particles (Marx,  1972). 

Physical states in which all particle or antiparticle times are equal still 
have the usual symmetry properties, but states at intermediate times do not. 
Hence the need to change the Fock space in order to formulate the dynamics 
of such a theory. 

References 
Marx, E. (1970a). Physica, 48, 247. 
Marx, E. (1970b). Naovo Cimento, 67A, I29. 
Marx, E. (1972). International Journal of Theoretical Physics, 6, 301. 
Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory, Chapters 

6-8. Row, Peterson and Company, Evanston, Illinois. 


